
いまさら聞けない トランスポーターの基礎 - 入門編 -

第3回 SLCトランスポーター試験について

株式会社ジェノメンブレン

細胞膜を介した物質の輸送

https://ruo.mbl.co.jp/bio/product/transmembrane/slc.html

受動輸送vs 能動輸送

受動輸送:エネルギーを使わない輸送方法

(濃度勾配に従う)

能動輸送:エネルギーを使って行う輸送方法

(濃度勾配に逆らう)

単純拡散vs 促進拡散

単純拡散: 細胞膜をそのまま通り抜ける拡散

促進拡散: タンパク質の助けを借りる拡散

チャネルvs トランスポーター

チャネル:「門」や「トンネル」。通り道が開くだけ

両側からアクセスできる

トランスポーター: 物質を1つずつ運ぶ「搬送役」

片側からしかアクセスできない

キャリア輸送vsポンプ輸送

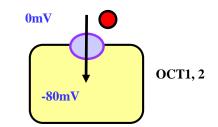
キャリア輸送: エネルギーを使わない輸送方法

ポンプ輸送:エネルギーを使って逆向きに運ぶ輸送方法

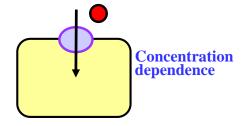
SLCトランスポーターとは?

Solute carrier (SLC) transporter family:

- ◆ 溶質(イオンや小さい分子)を細胞の内外に運ぶタンパク質のファミリー
- ◆ エネルギー(ATP)を利用せずに促進拡散を行うキャリア
- ◆ 65~66ファミリー、450前後が存在すると言われている (SLC Tables: https://slc.bioparadigms.org/)
- 1. 共輸送 (Co-transporter)
- PEPT1
 PEPT2
 OCTN1
 OCTN2
 SGLT1
 MCT1

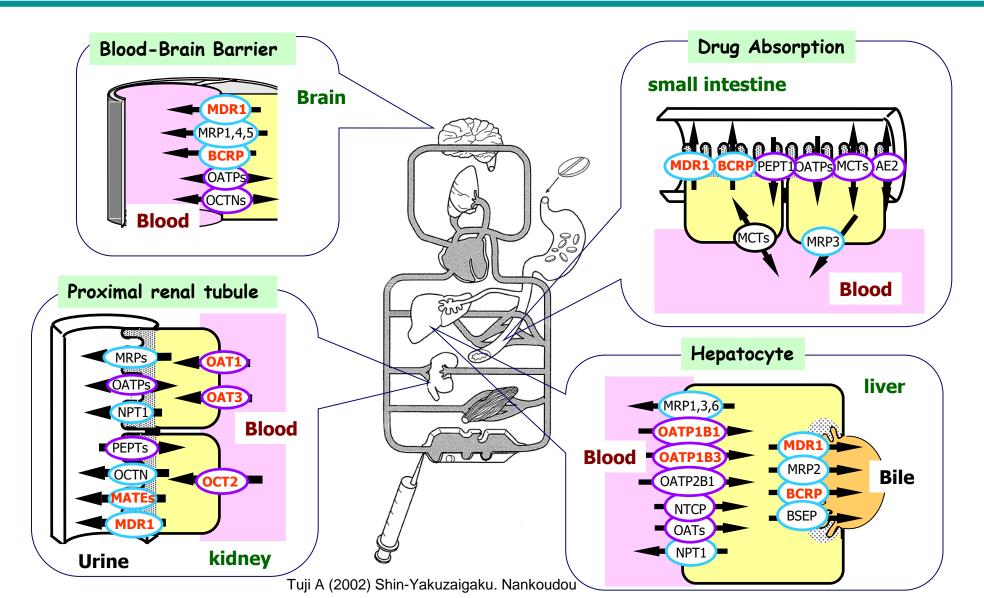

- 2. 交換輸送 (Exchanger)
- H⁺ or X⁻

 MATE1


 MATE2-K

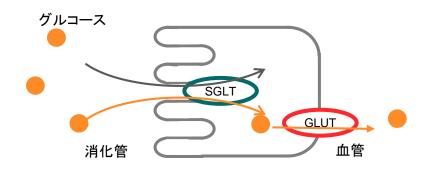
 OCTN2

 OAT1
- 3. 膜電位 (Membrane Potential)

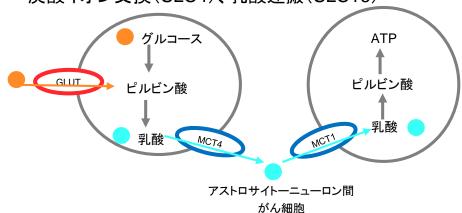


4. 促進拡散 (Facilitated Diffusion)

SLCトランスポーターの役割-薬物動態において



SLCトランスポーターの役割-その他


栄養物質輸送:

グルコース(GLUT)、アミノ酸(SLC7, SLC1, SLC38等)など

イオン・代謝産物の移動:

炭酸イオン交換(SLC4)、乳酸運搬(SLC16)

疾患との関連

代謝系	SLC2	発達障害, Fanconi-Bickel症候群(FBS)
	SLC16	乳酸アシドーシス
神経系	SLC6	うつ病、てんかん、自閉症、ADHD
腎臓	SLC12	バーデター症候群
	SLC34	低リン血症性くる病
消化器	SLC5	ファンコーニ症候群
骨·発達	SLC13	骨粗鬆症
薬剤応答	SLC21	薬物性腎障害
	SLC22	薬剤排泄異常

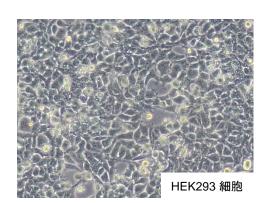
SLCトランスポーターの機能評価

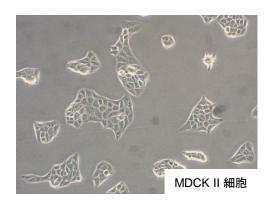
[A] 評価系

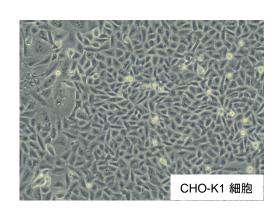
[1] 発現細胞

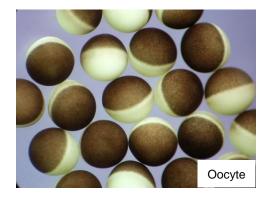
HEK293細胞: e.g. TRANSiPORT、細胞プレート

MDCK細胞: e.g. TransFlex

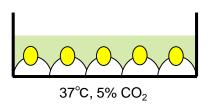

CHO細胞


Xenopus oocyte


[2] 肝細胞や肝細胞株

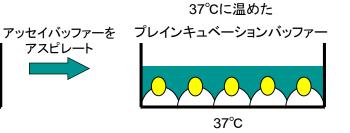

[B] 評価方法、アッセイ方法

放射性標識基質を用いた取り込み試験 蛍光基質(fluorescent substrate)を使った取り込み試験 LC-MS/MSによる非標識基質の定量



発現細胞を用いた機能評価 ①手順

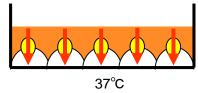
[播種]


アッセイの前日に細胞を播種

[洗浄]

37°Cに温めたアッセイ 培地をアスピレート バッファーで洗浄 アッセイバッファー アスピレート

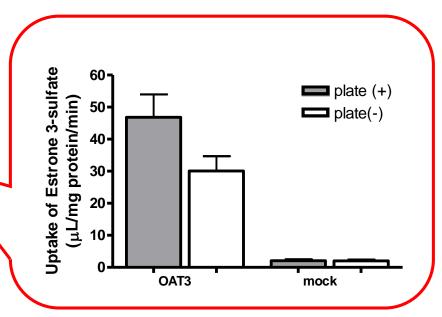
[プレインキュベーション]



[取り込み]

プレインキュベーション

バッファーをアスピレート


化合物溶液を入れて反応開始

任意の時間になったら化合物溶液を 素早く吸引

Point!

- 接着が弱い細胞、例えばHEK293細胞を用いる時は poly-Lysineによるコートが必要
- バッファーを入れる時は細胞に直接当たらないように 壁に沿って入れる
- バッファーの温度が37°Cになるようにプレートの下に 金属プレートを入れるかホットプレートを少し高めに設 定しておくと良い
- ウォッシュバッファーを入れっぱなしにしない
- 有機溶媒は終濃度0.5%以下に抑える (最大でも1.0%)

[洗浄×3]

氷冷したアッセイバッファーで 3回洗浄
素早く行う

発現細胞を用いた機能評価 ②コート剤

リシンコート: Corning #356414 コラーゲンコート: Corning #356408

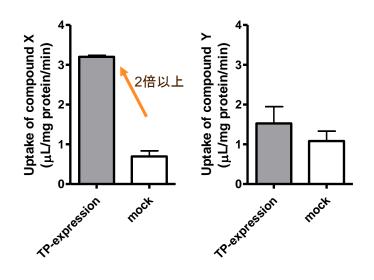
アッセイ前

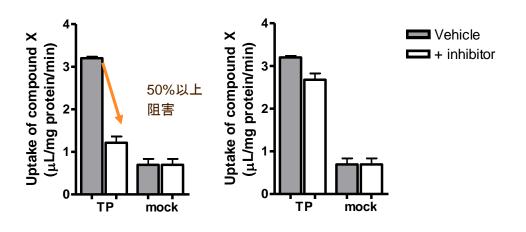
コラーゲンコート: 中心部

コラーゲンコートでもHEK293細胞の接着性は良くなるが、アッセイをすると ウェル内の一部で細胞がはがれることを確認

発現細胞を用いた機能評価 ③取り込み試験

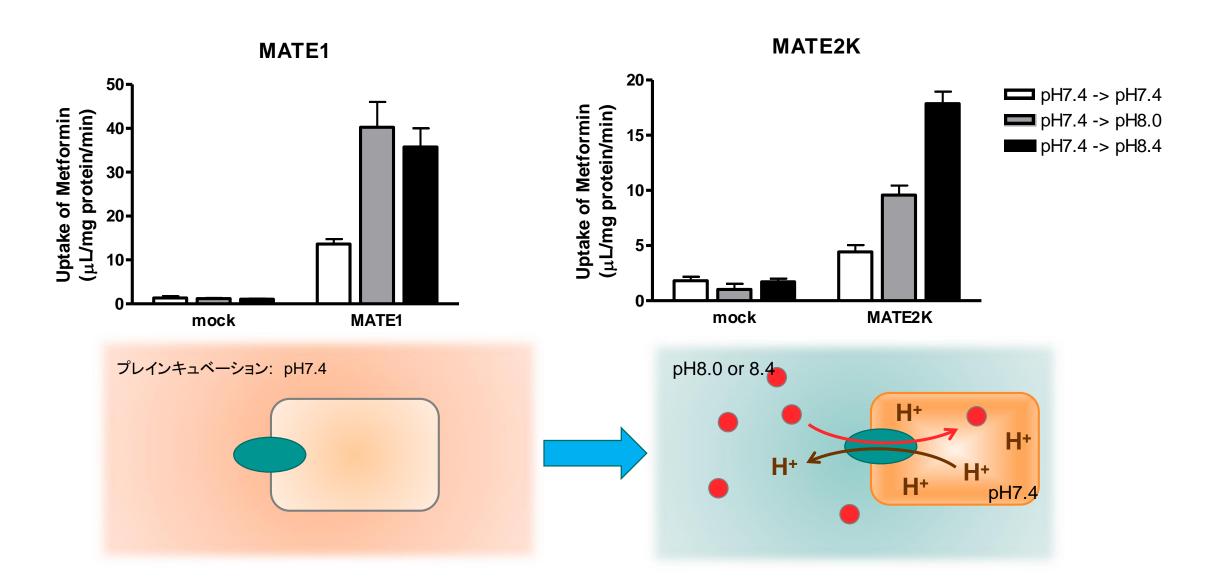
基質試験を行う場合

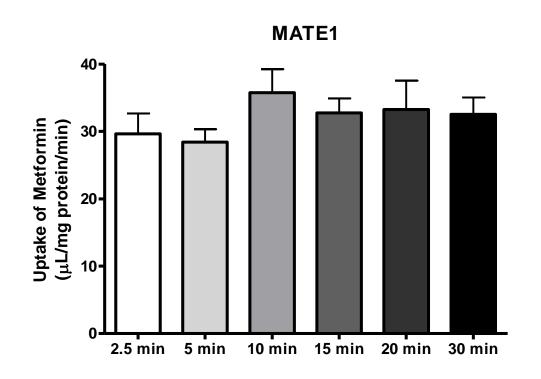

- 1. 親細胞株又は空のベクターを導入した非発現細胞株と 比較する。
- 2. トランスポーターの阻害薬の存在下と非存在下で比較する。

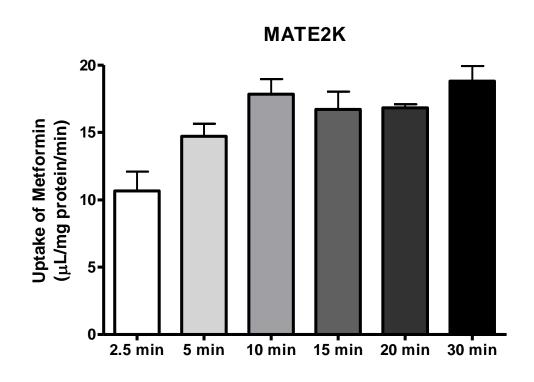

基質試験に用いることが出来る材料

- 1. トランスポーター遺伝子を導入した発現細胞株
- 2. ヒト肝細胞又は肝細胞株 (懸濁、接着いずれも可)
 - :個々のトランスポーターに比較的特異性のある阻害剤を用いた阻害試験の実施をするべき

カットオフ値


トランスポーター発現細胞における被験薬の取り込みが、非発現細胞における取り込みと比較して顕著であり(例、非発現細胞の2倍以上)、かつトランスポーターの既知の阻害薬によって50%を超えて阻害される場合


発現細胞を用いた機能評価 ④ pH依存性-1



発現細胞を用いた機能評価 ⑤ pH依存性-2

プレインキュベーション時間の活性への影響

→ プレインキュベーションの時間は10分に設定するのが良さそうだ。安定した結果を得るためには 出来るだけプレインキュベーションの時間は揃えた方が良い。

発現細胞を用いた機能評価 ⑥ 阻害試験

阻害試験を行う場合

トランスポーター発現細胞株のみを用いて、既知のプローブ基質の取り込みを評価することでよい。

プローブ基質濃度はそのトランスポーターに対するKm値より低い濃度を使用する。

→ 基質濃度は[S]<<K_mとしておくとK_i≈IC₅₀と扱ってもよい

阻害試験に用いることが出来る材料

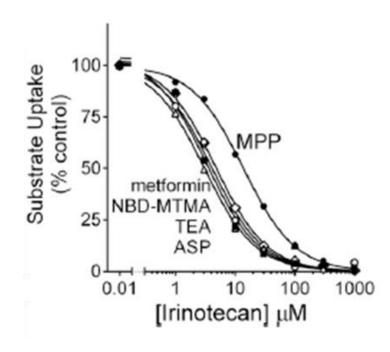
- 1. トランスポーター遺伝子を導入した発現細胞株
- 2. ヒト肝細胞又は肝細胞株 (懸濁、接着いずれも可): できるだけトランスポーター特異性の高い プローブ基質を使用する

カットオフ値

OATP1B1, OATP1B3	$IC_{50,u}>10 \times C_{\text{max, inlet,u}} (C_{\text{max,inlet,u}}/IC_{50,u}<0.1)$
OAT1, OAT3, OCT2	$IC_{50,u} > 10 \times C_{max,u} (C_{max,u} / IC_{50,u} < 0.1)$
MATE1, MATE2K	$IC_{50,u} > 50 \times C_{max,u} (C_{max,u} / IC_{50,u} < 0.02)$

- C_{max,u}:治療用量の定常状態における阻害薬の非結合形C_{max}
- C_{max, inlet,u}:肝臓入り口での阻害薬の推定非結合形C_{max} C_{max,inlet,u}=f_{u,p}×(C_{max}+(Fa×Fg×ka×投与量)/Qh/RB)
 - ・不明であれば、Fa=1、Fg=1、ka=0.1/minをワーストケースの推定値として用いることができる。
 - fu,pが1%未満の実測値に信頼性が示せない場合は、fu,pを1%に設定する

発現細胞を用いた機能評価 ⑦ 阻害試験


基質依存的阻害

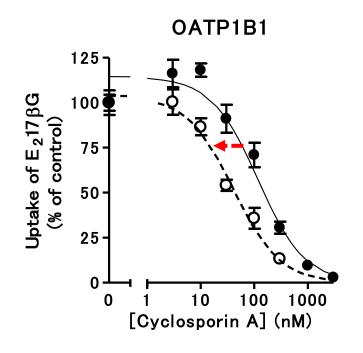
OATP1B1における基質依存的阻害

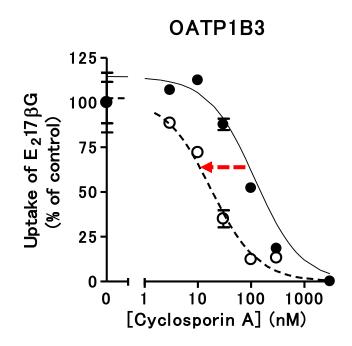
0.1	Inhibitors		
Substrates	CsA ^a	Rifampin	Gemfibrozil
		K_b μM	
In vitro prototypical probe substrates			
E_2G^b	0.118 ± 0.015	0.585 ± 0.074	26.4 ± 2.1
E_1S^b	0.732 ± 0.224	6.96 ± 1.31	381 ± 60
BSP^b	0.694 ± 0.149	2.75 ± 0.62	173 ± 34
Clinically used substrate drugs			
Pitavastatin	0.228 ± 0.027	1.07 ± 0.08	58.8 ± 10.7
Atorvastatin	0.160 ± 0.016	0.922 ± 0.122	46.0 ± 8.9
Fluvastatin	0.157 ± 0.016	1.05 ± 0.19	72.7 ± 8.7
Rosuvastatin	0.301 ± 0.031	0.952 ± 0.098	63.6 ± 8.4
Pravastatin	0.184 ± 0.046	0.653 ± 0.117	9.65 ± 2.79
Repaglinide	0.0857 ± 0.0330	0.598 ± 0.198	48.3 ± 18.0
Nateglinide	0.244 ± 0.038	0.358 ± 0.079	252 ± 100
Glibenclamide	0.102 ± 0.005	0.442 ± 0.102	29.6 ± 5.2
Bosentan	0.206 ± 0.056	0.694 ± 0.211	36.6 ± 5.8
Valsartan	0.138 ± 0.017	0.377 ± 0.022	13.4 ± 0.3
Torasemide	0.486 ± 0.112	1.23 ± 0.30	$49.5 \pm 10.$
Fexofenadine	0.0771 ± 0.0100	0.423 ± 0.032	31.4 ± 4.3

Izumi S et al. Drug Metab Dispos. 43:235-47. 2015

OCT2における基質依存的阻害

Sandoval P et al. Mol Pharmacol. 94:1057-1068. 2018


プローブ基質によりIC50が異なる


→より厳しいIC50が得られるプローブ基質、あるいは臨床での併用を考慮した基質を使用する

発現細胞を用いた機能評価 ⑧ 阻害試験

時間依存的阻害

- → Without Cyclosporin A
- → With Cyclosporin A

IC50 (nM)	OATP1B1	OATP1B3
Without	117.3±26.8	88.3±22.1
With	41.1±10.5	17.9±3.7

測定条件:

基質: 100 nM [³H]-Estradiol 17β-glucuronide ([3H] Substrate : Carrier = 1: 4)

阻害剤: Cyclosporin A

プレインキュベーション時間: 30 min

反応時間: 2.5 min

Without cyclosporin A: 通常のアッセイバッファー

With cyclosporin A: Cyclosporine Aを含んだアッセイバッファー

in vitro評価における基質及び阻害薬の例

Table 10: Examples of substrates for transporters (In Vitro Studies)

Transporter	Substrate
P-gp	Digoxin, N-methyl-quinidine (NMQ), Quinidine, Vinblastine
BCRP	Estrone-3-sulfate, 2-amino-1-methyl-6-phenylimidazo[4,5-
	b]pyridine (PhIP), Prazosin, Rosuvastatin, Sulfasalazine
OATP1B1, OATP1B3	Cholecystokinin octapeptide (CCK-8, selective for
	OATP1B3), Estradiol-17β-glucuronide, Pitavastatin,
	Pravastatin, Rosuvastatin
OAT1	Adefovir, Cidofovir, p-aminohippurate (PAH), Tenofovir
OAT3	Benzylpenicillin, Estrone-3-sulfate, Methotrexate
MATE1, MATE2-K	Creatinine, Metformin, 1-methyl-4-phenylpyridinium
	(MPP+), Tetraethylammonium (TEA)
OCT2	Creatinine, Metformin, Tetraethylammonium (TEA)

Table 11: Examples of inhibitors for transporters (In Vitro Studies)

Transporter	Inhibitor
P-gp	GF120918 (dual P-gp/BCRP inhibitor), Verapamil, Valspodar (PSC833), Zosuquidar (LY335979)
BCRP	Fumitremorgin C, GF120918 (dual P-gp/BCRP inhibitor), Ko143, Novobiocin
OATP1B1, OATP1B3	Bromosulfophthalein (BSP), Cyclosporine, Rifampin, Rifamycin SV
OAT1, OAT3	Benzylpenicillin*, Probenecid
MATE1, MATE2-K	Cimetidine, Pyrimethamine, Quinidine
OCT2	Cimetidine, Clonidine, Pyrimethamine, Verapamil

^{*} Relatively selective inhibitor for OAT3.

まとめ

- ◆ SLCトランスポーターとはエネルギーを使わずに溶質を細胞の内外に運ぶタンパク質ファミリー
- ◆薬物動態では小腸、肝臓、腎臓、血液脳関門といったところに発現し、主に物質の取り込みを行っている
- ◆評価にはトランスポーター発現細胞や肝細胞、肝細胞株が用いられる
- ◆ 適切な試験条件を設定する
 - > プレートのコーティング
 - ➤ 有機溶媒の濃度
 - ➤ バッファー組成 (pH等)
 - プレインキュベーションの時間や条件
 - ▶ (阻害試験において)プローブ基質の選定や濃度